All sections of the life sciences sector understand the need to evolve operations using the cutting-edge technologies, processes, and best practices that come under the smart manufacturing umbrella. However, it’s important to take a structured approach, with a carefully developed and implemented Smart Factory strategy.
In this blog, we’ll look at why it is important to develop an overarching smart manufacturing strategy, as well as provide an overview for creating one. The strategy overview that we present is relevant wherever you are on your smart manufacturing journey.
Change in the Life Sciences Sector and Why a Well-Structured Change Strategy is Important
The fact the life sciences sector is experiencing unprecedented change has been a common topic of discussion for some years now. The reality goes deeper than the concept of change, though, as change implies there will be an endpoint or conclusion.
However, the more likely scenario is that the life sciences sector has entered a period of ongoing change. New technologies are now developing at such a rapid pace that continuous evolution is now a reality and a necessity.
The ongoing changes that are taking place are not just the purview of technologies, either, as the life sciences sector is also experiencing changing customer expectations, markets, and products, all of which present opportunities. There are challenges too, of course, including skills, economic, business resilience, regulatory, and geopolitical challenges.
Smart manufacturing solutions help companies in the life sciences sector take advantage of the opportunities while addressing the challenges.
The Continuous State of Change – an Example
An example we can use to highlight the continuous state of change in the life sciences sector is the emerging trend of manufacturing operations needing to innovate at speed to keep up with cutting-edge product development breakthroughs.
A specific example is personalized pharmaceutical products that need to be produced as close to the patient as possible.
This means moving away from the mass production approach that has served the life sciences sector so well for decades (and other sectors for even longer). Instead of large manufacturing facilities producing and shipping products far and wide to reach the patients who need them, many personalized medicines will require batch-size-of-one manufacturing processes and, potentially, factory-in-a-box solutions where manufacturing capabilities, rather than the manufactured product, are brought to the patient.
Adopting a smart manufacturing approach is the only way to address the needs of today (productivity, competitiveness, quality, compliance, etc), as well as keeping up with the developments of the not-too-distant future (such as those in this example).
What is Smart Manufacturing?
It is helpful when developing a smart manufacturing strategy to look at what we mean by “smart manufacturing”. Some definitions include descriptions like the digitalization of manufacturing processes. Automation is a key component, but it is only one element. Becoming a data-driven operation is also crucial.
However, it is often better to look at smart manufacturing through the lens of outcomes and objectives. Examples include:
- Improvements in key manufacturing metrics such as OEE and productivity.
- Improved resilience to deal with market challenges as well as enhanced agility to take advantage of commercial opportunities.
- Enhanced scaling capabilities while enabling production facilities to be more flexible, including in relation to producing different products on the same line.
- Creating connected operations, whether connected across different facilities, production lines within the same facility, or equipment on a single production line. It also involves connecting manufacturing operations with other business units and departments.
All the above objectives and outcomes can be achieved with a well-structured and implemented smart manufacturing strategy.